希金斯vs史帝芬斯谁赢了-希金斯vs史帝芬斯
斯诺克147记录
是的!
名次 选手 赛事 对手 年份
1 戴维斯 (Steve Dis) LADA经典赛 斯宾塞 1982
2 索伯恩 (Cliff Thorburn) 世锦赛 格里菲斯
3 K-史蒂文斯 (Kirk Stevens) 大师赛 怀特
4 索尼 (Willie Thorne) 英锦赛 汤米-墨菲 1987
5 米奥 (Tony Meo) 联盟杯 亨德利 1988
6 罗比多 (Alain Robidoux ) 欧洲公开赛 米得克劳福特 1988
7 约翰-瑞 (John Rea) 苏格兰职业赛 布莱克 1989
8 索伯恩 (Cliff Thorburn) 联盟杯 怀特 1987
9 瓦塔纳 (James Wattana) 大师赛 达沃金斯 1991
10 艾伯顿 (Peter Ebdon) Strachan公开赛 马汀 1991
11 瓦塔纳 (James Wattana) 英国公开赛 德拉高 1992
12 怀特 (Jimmy White) 世锦赛 德拉高 1992
13 帕洛特 (John Parrott) 联盟杯 梅奥 1992
14 亨德利 (Stephen Hendry) 联盟杯 索尼 1992
15 艾伯顿 (Peter Ebdon) 英锦赛 达赫迪 1992
16 麦克当纳 (Did McDonnell) 英国公开赛 巴罗 1994
17 亨德利 (Stephen Hendry) 世锦赛 怀特 1995
18 亨德利 (Stephen Hendry) 英锦赛 威尔金森 1995
19 亨德利 (Stephen Hendry) 利物浦慈善挑战赛 奥沙利文 19
20 奥沙利文 (Ronnie O'Sullivan) 世锦赛 普莱斯 19
21 瓦塔纳 (James Wattana) 中国国际赛 庞卫国 19
22 亨德利 (Stephen Hendry) 联盟杯 达赫迪 1998
23 甘诺 (Adrian Gunnell) 泰国大师赛 威尔曼 1998
24 哈斯努 (Mehmet Husnu) 中国国际赛 巴克尔 1998
25 普林斯 (Jason Prince) 英国公开赛 布拉姆比 1998
26 奥沙利文 (Ronnie O'Sullivan) 威尔士公开赛 瓦塔纳 1999
27 宾汉姆 (Stuart Bingham) 英国巡回赛 霍金斯 1999
28 戴森 (Nick Dyson) 英国巡回赛 甘诺 1999
29 多特 (Graeme Dott) 英国公开赛 大卫-路 1998
30 亨德利 (Stephen Hendry) 英国公开赛 艾伯顿 1999
31 皮奇思 (Barry Pinches) 威尔士公开赛 约翰逊 1999
32 奥沙利文 (Ronnie O'Sullivan) 大奖赛 多特 1999
33 巴罗斯 (Karl Burrows) B&H锦标赛 罗萨 1999
34 亨德利 (Stephen Hendry) 英锦赛 威克斯 1999
35 希金斯 (John Higgins) 国家杯 泰勒 2000
36 希金斯 (John Higgins) 爱尔兰大师赛 泰勒 2000
37 马奎尔 (Stephen Maguire) 苏格兰公开赛 范布恩 2000
38 奥沙利文 (Ronnie O'Sullivan) 苏格兰公开赛 汉恩 2000
39 傅家俊 (Marco Fu) 苏格兰公开赛 达赫迪 2000
40 迈克丹尼尔 (Did McDonnell) B&H锦标赛 米金 2000
41 戴森 (Nick Dyson) 英锦赛 米尔金斯 2000
42 亨德利 (Stephen Hendry) 马耳他大奖赛 威廉姆斯 2001
43 奥沙利文 (Ronnie O'Sullivan) LG杯 亨利 2001
44 墨菲 (Shaun Murphy) B&H锦标赛 罗萨 2001
45 德拉高 (Tony Drago) B&H锦标赛 宾汉姆 2002
46 奥沙利文 (Ronnie O'Sullivan) 世锦赛 傅家俊 2003
47 希金斯 (John Higgins) LG杯 威廉姆斯 2003
48 希金斯 (John Higgins) 英国公开赛 乔治 2003
49 希金斯 (John Higgins) 大奖赛 沃尔顿 2004
50 格雷 (Did Gray) 世锦赛 塞尔比 2004
51 威廉姆斯 (Mark Williams) 世锦赛 米尔金斯 2005
52 宾汉姆 (Stuart Bingham) 大奖赛 坎贝尔 2005
53 米尔金斯 (Robert Milkins) 世锦赛 塞尔比 2006
54 柯普 (Jamie Cope) 大奖赛 霍尔特 2006
55 丁俊晖 (Ding Junhui) 温布利大师赛 汉密尔顿 2007
56 希金森 (Andrew Higginson) 威尔士公开赛 卡特 2007
57 布内特 (Jamie Burnett) 大奖赛 刘菘 2007
58 福德 (Tom Ford) 大奖赛 戴维斯 2007
59 奥沙利文 (Ronnie O'Sullivan) 北爱尔兰杯 卡特 2007
60 奥沙利文 (Ronnie O'Sullivan) 英锦赛 塞尔比 2007
61 马奎尔 (Stephen Maguire) 中国赛 瑞恩-戴 2008
62 奥沙利文 (Ronnie O'Sullivan) 世锦赛 马克-威廉姆斯 2008
63 卡特 (Allister Carter) 世锦赛 艾伯顿 2008
64 柯普 (Jamie Cope) 上海大师赛 马克-威廉姆斯 2008
65 梁文博 (Liang Wenbo) 巴林锦标赛 古尔德 2008
66 坎贝尔 (Marcus Campbell) 巴林锦标赛 胡萨比 2008
67 丁俊晖 (Ding Junhui) 英锦赛 希金斯 2008
68 亨德利 (Stephen Hendry) 世锦赛 墨菲 2009
9 奥沙利文,亨德利
6 希金斯
3 瓦塔纳
2 宾汉姆,戴森,埃伯顿,马奎尔,索伯恩,柯普,丁俊晖
27人完成过1次
斯诺克球员外号
丁俊晖——“台球神童”、“东方之星”;另外,丁俊晖还有绰号“冰酷”,源自年轻的他比赛时
总是一副少年老成的模样,冷静得让对手害怕。小时候,丁俊晖便赢得了“怪球丁”的绰号;1987年,
属兔的梁文博,丁俊晖,田鹏飞,先后出生。最沉稳的丁俊晖排行老2,在英国一起打球的梁文博和
田鹏飞给小晖起名为“大伯”。
奥沙利文——"火箭"。左右开弓,击球速度快。19年世锦赛上奥沙利文打出了世锦赛史上最完美的一杆,
5分20秒,转瞬之间就缔造了147分,不论速度、准度还是观赏性,奥沙利文“火箭”的称号名不虚传。
斯蒂芬"亨德利——“台球皇帝”、“中袋王”、“架杆王”。在1990年代获得过7次世界锦标赛冠军,
“台球皇帝”之绰号受之无愧。
史蒂夫"戴维斯——"天然金块"和"活力法师" 。在1980年代获得过6次世界锦赛冠军。以其辉煌的战绩
与迷人的绅士风度倾倒众多球迷。
詹米"柯普——“散弹”、“快” 。这位在2007中国公开赛为国内观众所熟知的斯诺克选手,
进攻犀利、火力迅猛,颇得“火箭” 奥沙利文真传。
保罗"亨特——"台坛贝克汉姆"的绰号和“持金色球杆的人”。精湛的球技、帅气的面容以及从骨子里
透出的绅士风度为人称道,可惜已于2006年10去世。斯人已去,风范常存。
汉密尔顿——"罗宾汉"。罗宾汉是英国民间传说中著名的英雄形象。他反抗权贵族的压迫,除强扶弱、
声名远扬。或许,汉密尔顿就是以其稳健的发挥,成为巨人杀手,得此绰号。
尼尔"罗伯逊——"墨尔本机器"。斯诺克球坛最闪亮的一颗未来之星,本次2007年斯诺克世锦赛上也有
惊艳的表现。其绰号的由来,即与其国籍有关,也与其技术特点有关。他被认为是世界上最好的长台
进攻者,其准度就如同机器一般。
马克"威廉姆斯——“金左手”,英国媒体送给他的绰号是“地球上最准的人”,还有绰号为飞行员,
因为他的进步只能用"神速"来形容。
迈克尔"霍尔特——“刺客”。虽然未取得卓越战绩,但他的“刺客”本色仍令众多斯诺克巨星不敢轻视。
约翰"希金斯——“巫师”、“快乐的大男孩” 。斯诺克届四大天王之一,球台上将战术技巧运用得
出神入化。比赛中,对手只要接受到他斜着抛过来的一个眼神,便中了该死的魔咒,亨德利、奥苏里云都
领教过,差一分打不死他,就输了。
肯"达赫迪——“都柏林之爱”。爱尔兰人骄傲。
吉米"怀特——“旋风”“人民的冠军”“千年老二”。一共获得了22个大赛冠军,6次世界亚军。他被称为
"人民的冠军",最受欢迎,最有台球天份,最有人缘的球员。又被称为"未拿过世界冠军的最好的球员"。
格雷姆"多特——“袖珍发电机”,2006年斯诺克世锦赛冠军。比赛经验丰富、体能充沛、控制能力极强、
战术运用合理、加上心态平稳的特点,无愧“袖珍发电机”的称号。
史蒂芬"李——“胖子” 。形象、可爱,无需多言。
甘诺——"大象"。据说这个绰号是丁俊晖和任浩江为其命名的。这个绰号当然与其外形相关。想想也颇为形象。
詹姆斯-瓦塔纳——“亚洲球王”,历史最高排名第三。
傅家俊——“神奇小子”。两年内世界排名从337位上升到15位,2006世锦赛打进4强。
昆廷"汉恩——有“澳大利亚第一杆”的美誉,因涉嫌,已被长期禁赛。
乔"斯威尔——球风彪悍,人称“海盗” 。
通尼"德拉戈(Tony Drago)“世界上击球最快的人”。1998年在英国诺伍德举行的一场比赛中打出的
一杆球149分(其中包括对手失误罚分),并被吉尼斯世界纪录收录为最高的斯诺克单杆得分。
查阅了一下,发现2002年世锦赛冠军彼得-艾伯顿、2005年世锦赛冠军肖恩-墨菲,2007斯诺克表现出众的
塞尔比、马奎尔等竟然尚无绰号,甚感遗憾。希望有“好事者”能尽快为他们也取一个形象、生动、贴切的绰号。
宇宙反面是什么样的
是史蒂芬·霍金的观点比较让人容易接受:宇宙有限而无界,只不过比地球多了几维。比如,我们的地球就是有限而无界的。在地球上,无论从南极走到北极,还是从北极走到南极,你始终不可能找到地球的边界,但你不能由此认为地球是无限的。实际上,我们都知道地球是有限的。地球如此,宇宙亦是如此。
怎么理解宇宙比地球多了几维呢?举个例子:一个小球沿地面滚动并掉进了一个小洞中,在我们看来,小球是存在的,它还在洞里面,因为我们人类是“三维”的;而对于一个动物来说,它得出的结论就会是:小球已经不存在了!它消失了。为什么会得出这样的结论呢?因为它生活在“二维”世界里,对“三维”是无法清楚理解的。同样的道理,我们人类生活在“三维”世界里,对于比我们多几维的宇宙,也是很难理解清楚的。这也正是对于“宇宙是什么样子”这个问题无法解释清楚的原因。
1、均匀的宇宙
长期以来,人们相信地球是宇宙的中心。哥白尼把这个观点颠倒了过来,他认为太阳才是宇宙的中心。地球和其他行星都围绕着太阳转动,恒星则镶嵌在天球的最外层上。布鲁诺进一步认为,宇宙没有中心,恒星都是遥远的太阳。
无论是托勒密的地心说还是哥白尼的日心说,都认为宇宙是有限的。教会支持宇宙有限的论点。但是,布鲁诺居然敢说宇宙.是无限的,从而挑起了宇宙究竟有限还是无限的长期论战。这场论战并没有因为教会烧死布鲁诺而停止下来。主张宇宙有限的人说:“宇宙怎么可能是无限的呢?”这个问题确实不容易说清楚。主张宇宙无限的人则反问:“宇宙怎么可能是有限的呢?”这个问题同样也不好回答。
随着天文观测技术的发展,人们看到,确实像布鲁诺所说的那样,恒星是遥远的太阳。人们还进一步认识到,是由无数个太阳系组成的大星系,我们的太阳系处在系的边缘,围绕着系的中心旋转,转速大约每秒250千米,围绕银心转一圈约需2.5亿年。太阳系的直径充其量约1光年,而系的直径则高达10万光年。系由1000多亿颗恒星组成,太阳系在系中的地位,真像一粒砂子处在北京城中。后来又发现,我们的系还与其他系组成更大的星系团,星系团的直径约为107光年(1000万光年)。目前,望远镜观测距离已达100亿光年以上,在所见的范围内,有无数的星系团存在,这些星系团不再组成更大的团,而是均匀各向同性地分布着。这就是说,在10的7次方光年的尺度以下,物质是成团分布的。卫星绕着行星转动,行星、彗星则绕着恒星转动,形成一个个太阳系。这些太阳系分别由一个、两个、三个或更多个太阳以及它们的行星组成。有两个太阳的称为双星系,有三个以上太阳的称为聚星系。成千亿个太阳系聚集在一起,形成系,组成系的恒星(太阳系)都围绕着共同的重心——银心转动。无数的系组成星系团,团中的各系同样也围绕它们共同的重心转动。但是,星系团之间,不再有成团结构。各个星系团均匀地分布着,无规则地运动着。从我们地球上往四面八方看,情况都差不多。粗略地说,星系固有点像容器中的气体分子,均匀分布着,做着无规则运动。这就是说,在10的8次方光年(一亿光年)的尺度以上,宇宙中物质的分布不再是成团的,而是均匀分布的。由于光的传播需要时间,我们看到的距离我们一亿光年的星系,实际上是那个星系一亿年以前的样子。所以,我们用望远镜看到的,不仅是空间距离遥远的星系,而且是它们的过去。从望远镜看来,不管多远距离的星系团,都均匀各向同性地分布着。
因而我们可以认为,宇观尺度上(10的5次方光年以上)物质分布的均匀状态,不是现在才有的,而是早已如此。
于是,天体物理学家提出一条规律,即所谓宇宙学原理。这条原理说,在宇观尺度上,三维空间在任何时刻都是均匀各向同性的。现在看来,宇宙学原理是对的。所有的星系都差不多,都有相似的演化历程。因此我们用望远镜看到的遥远星系,既是它们过去的形象,也是我们星系过去的形象。望远镜不仅在看空间,而且在看时间,在看我们的历史。
2、有限而无边的宇宙
爱因斯坦发表广义相对论后,考虑到万有引力比电磁力弱得多,不可能在分子、原子、原子核等研究中产生重要的影响,因而他把注意力放在了天体物理上。他认为,宇宙才是广义相对论大有用武之地的领域。
爱因斯坦1915年发表广义相对论,1917年就提出一个建立在广义相对论基础上的宇宙模型。这是一个人们完全意想不到的模型。在这个模型中,宇宙的三维空间是有限无边的,而且不随时间变化。以往人们认为,有限就是有边,无限就是无边。爱因斯坦把有限和有边这两个概念区分开来。
一个长方形的桌面,有确定的长和宽,也有确定的面积,因而大小是有限的。同时它有明显的四条边,因此是有边的。如果有一个小甲虫在它上面爬,无论朝哪个方向爬,都会很快到达桌面的边缘。所以桌面是有限有边的二维空间。如果桌面向四面八方无限伸展,成为欧氏几何中的平面,那么,这个欧氏平面是无限无边的二维空间。
我们再看一个篮球的表面,如果篮球的半径为r,那么球面的面积是4πr的2次方,大小是有限的。但是,这个二维球面是无边的。如有一个小甲虫在它上面爬,永远也不会走到尽头。所以,篮球面是一个有限无边的二维空间。
按照宇宙学原理,在宇观尺度上,三维空间是均匀各向同性的。爱因斯坦认为,这样的三维空间必定是常曲率空间,也就是说空间各点的弯曲程度应该相同,即应该有相同的曲率。由于有物质存在,四维时空应该是弯曲的。三维空间也应是弯的而不应是平的。爱因斯坦觉得,这样的宇宙很可能是三维超球面。三维超球面不是通常的球体,而是二维球面的推广。通常的球体是有限有边的,体积是4/3πr的3次方,它的边就是二维球面。三维超球面是有限无边的,生活在其中的三维生物(例如我们人类就是有长、宽、高的三维生物),无论朝哪个方向前进均碰不到边。如它一直朝北走,最终会从南边走回来。
宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单阶情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。
爱因斯坦试图在三维空间均匀各向同性、且不随时间变化的定下,救解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的限制(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,必须有排斥效应与吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的、均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的、是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。
3、膨胀或脉动的宇宙
几年之后,一个名不见经传的前苏联数学家弗利德曼,应用不加宇宙项的场方程,得到一个膨胀的、或脉动的宇宙模型。弗利德曼宇宙在三维空间上也是均匀、各向同性的,但是,它不是静态的。这个宇宙模型随时间变化,分三种情况。第一种情况,三维空间的曲率是负的;第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的;第三种情况,三维空间的曲率是正的。前两种情况,宇宙不停地膨胀;第三种情况,宇宙先膨胀,达到一个极大值后开始收缩,然后再膨胀,再收缩……因此第三种宇宙是脉动的。弗利德曼的宇宙最初发表在一个不太著名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。爱因斯坦得知这类膨胀或脉动的宇宙模型后,十分兴奋。他认为自己的模型不好,应该放弃,弗利德曼模型才是正确的宇宙模型。
同时,爱因斯坦宣称,自己在广义相对论的场方程上加宇宙项是错误的,场方程不应该含有宇宙项,而应该是原来的老样子。但是,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼,再也收不回去了。后人没有理睬爱因斯坦的意见,继续讨论宇宙项的意义。今天,广义相对论的场方程有两种,一种不含宇宙项,另一种含宇宙项,都在专家们的应用和研究中。
早在1910年前后,天文学家就发现大多数星系的光谱有红移现象,个别星系的光谱还有紫移现象。这些现象可以用多谱勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,即光谱线向长波方向移动的现象。反之,向着我们迎面而来的光源,光谱线会向短波方向移动,出现紫移现象。这种现象与声音的多普勒效应相似。许多人都有过这样的感受:迎面而来的火车其鸣叫声特别尖锐刺耳,远离我们而去的火车其鸣叫声则明显迟钝。这就是声波的多普勒效应,迎面而来的声源发出的声波,我们感到其频率升高,远离我们而去的声源发出的声波,我们则感到其频率降低。
如果认为星系的红移、紫移是多普勒效应,那么大多数星系都在远离我们,只有个别星系向我们靠近。随之进行的研究发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们系所在的星系团称本星系团)。本星系团中的星系,多数红移,少数紫移;而其他星系团中的星系就全是红移了。
1929年,美国天文学家哈勃总结了当时的一些观测数据,提出一条经验规律,河外星系(即我们系之外的其他系)的红移大小正比于它们离开我们系中心的距离。由于多普勒效应的红移量与光源的速度成正比,所以,上述定律又表述为:河外星系的退行速度与它们离我们的距离成正比:
V=HD
式中V是河外星系的退行速度,D是它们到我们系中心的距离。这个定律称为哈勃定律,比例常数H称为哈勃常数。按照哈勃定律,所有的河外星系都在远离我们,而且,离我们越远的河外星系,逃离得越快。
哈勃定律反映的规律与宇宙膨胀理论正好相符。个别星系的紫移可以这样解释,本星系团内部各星系要围绕它们的共同重心转动,因此总会有少数星系在一定时间内向我们的系靠近。这种紫移现象与整体的宇宙膨胀无关。
哈勃定律大大支持了弗利德曼的宇宙模型。不过,如果查看一下当年哈勃得出定律时所用的数据图,人们会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢于断定这些点应该描绘成一条直线呢?一个可能的答案是,哈勃抓住了规律的本质,抛开了细节。另一个可能是,哈勃已经知道当时的宇宙膨胀理论,所以大胆认为自己的观测与该理论一致。以后的观测数据越来越精,数据图中的点也越来越集中在直线附近,哈勃定律终于被大量实验观测所确认。
4、宇宙有限还是无限
现在,我们又回到前面的话题,宇宙到底有限还是无限?有边还是无边?对此,我们从广义相对论、大爆炸宇宙模型和天文观测的角度来探讨这一问题。
满足宇宙学原理(三维空间均匀各向同性)的宇宙,肯定是无边的。但是否有限,却要分三种情况来讨论。
如果三维空间的曲率是正的,那么宇宙将是有限无边的。不过,它不同于爱因斯坦的有限无边的静态宇宙,这个宇宙是动态的,将随时间变化,不断地脉动,不可能静止。这个宇宙从空间体积无限小的奇点开始爆炸、膨胀。此奇点的物质密度无限大、温度无限高、空间曲率无限大、四维时空曲率也无限大。在膨胀过程中宇宙的温度逐渐降低,物质密度、空间曲率和时空曲率都逐渐减小。体积膨胀到一个最大值后,将转为收缩。在收缩过程中,温度重新升高、物质密度、空间曲率和时空曲率逐渐增大,最后到达一个新奇点。许多人认为,这个宇宙在到达新奇点之后将重新开始膨胀。显然,这个宇宙的体积是有限的,这是一个脉动的、有限无边的宇宙。
如果三维空间的曲率为零,也就是说,三维空间是平直的(宇宙中有物质存在,四维时空是弯曲的),那么这个宇宙一开始就具有无限大的三维体积,这个初始的无限大三维体积是奇异的(即“无穷大”的奇点)。大爆炸就从这个“无穷大”奇点开始,爆炸不是发生在初始三维空间中的某一点,而是发生在初始三维空间的每一点。即大爆炸发生在整个“无穷大”奇点上。这个“无穷大”奇点。温度无限高、密度无限大、时空曲率也无限大(三维空间曲率为零)。爆炸发生后,整个“奇点”开始膨胀,成为正常的非奇异时空,温度、密度和时空曲率都逐渐降低。这个过程将永远地进行下去。这是一种不大容易理解的图像:一个无穷大的体积在不断地膨胀。显然,这种宇宙是无限的,它是一个无限无边的宇宙。
三维空间曲率为负的情况与三维空间曲率为零的情况比较相似。宇宙一开始就有无穷大的三维体积,这个初始体积也是奇异的,即三维“无穷大”奇点。它的温度、密度无限高,三维、四维曲率都无限大。大爆炸发生在整个“奇点”上,爆炸后,无限大的三维体积将永远膨胀下去,温度、密度和曲率都将逐渐降下来。这也是一个无限的宇宙,确切地说是无限无边的宇宙。
那么,我们的宇宙到底属于上述三种情况的哪一种呢?我们宇宙的空间曲率到底为正,为负,还是为零呢?这个问题要由观测来决定。
广义相对论的研究表明,宇宙中的物质存在一个临界密度ρc,大约是每立方米三个核子(质子或中子)。如果我们宇宙中物质的密度ρ大于ρc,则三维空间曲率为正,宇宙是有限无边的;如果ρ小于ρc,则三维空间曲率为负,宇宙也是无限无边的。因此,观测宇宙中物质的平均密度,可以判定我们的宇宙究竟属于哪一种,究竞有限还是无限。
此外,还有另一个判据,那就是减速因子。河外星系的红移,反映的膨胀是减速膨胀,也就是说,河外星系远离我们的速度在不断减小。从减速的快慢,也可以判定宇宙的类型。如果减速因子q大于1/2,三维空间曲率将是正的,宇宙膨胀到一定程度将收缩;如果q等于1/2,三维空间曲率为零,宇宙将永远膨胀下去;如果q小于1/2,三维空间曲率将是负的,宇宙也将永远膨胀下去。
表3列出了有关的情况:
表3
宇宙中物质密度 红移的减速因子 三维空间曲率 宇宙类型 膨胀特点
ρ>ρc q>1/2 正 有限无边 脉动
ρ=ρc q=1/2 零 无限无边 永远膨胀
ρ<ρc q<1/2 负 无限无边 永远膨胀
我们有了两个判据,可以决定我们的宇宙究竟属于哪一种了。观测结果表明,ρ<ρc,我们宇宙的空间曲率为负,是无限无边的宇宙,将永远膨胀下去!不幸的是,减速因子观测给出了相反的结果,q>1/2,这表明我们宇宙的空间曲率为正,宇宙是有限无边的,脉动的,膨胀到一定程度会收缩回来。哪一种结论正确呢?有些人倾向于认为减速因子的观测更可靠,推测宇宙中可能有某些暗物质被忽略了,如果找到这些暗物质,就会发现ρ实际上是大于ρc的。另一些人则持相反的看法。还有一些人认为,两种观测方式虽然结论相反,但得到的空间曲率都与零相差不大,可能宇宙的空间曲率就是零。然而,要统一大家的认识,还需要进一步的实验观测和理论推敲。今天,我们仍然肯定不了宇宙究竟有限还是无限,只能肯定宇宙无边,而且现在正在膨胀!此外,还知道膨胀大约开始于100亿-200亿年以前,这就是说,我们的宇宙大约起源于100亿-200亿年之前。
5、爱因斯坦宇宙模型
根据物理理论,在一定的设前提下提出的关于宇宙的设想与推测,称为宇宙模型。
著名科学家爱因斯坦于1915年建立了广义相对论的物理理论。这一理论认为,宇宙中没有绝对空间和绝对时间,无论是空间和时间都不能与物质隔开来,空间和时间均受物质影响;引力是空间弯曲的效应,而空间弯曲是由物质存在决定的。爱因斯坦将他的理论应用于宇宙研究,1917年发表了《根据广义相对论的宇宙学考察》的论文,他将广义相对论的引力场方程用于整个宇宙,建立起一种宇宙模型。
当时科学家普遍认为宇宙是静止的,不随时间变化的。虽然在几年前,美国天文学家斯里弗已发现了河外星系的谱线红移(显然这是对静止宇宙的挑战),但由于当时正值第一次世界大战,这一消息并没有传到欧洲。因此,爱因斯坦也和大多数科学家一样,认为宇宙是静态的。爱因斯坦想从引力场方程着手,得出一个宇宙是静态的、均匀的、各向同性的答案。但他得到的解是不稳定的,表明全间和距离不是恒定不变的,而是随时变化的。为了得到一个空间是稳定的解,爱因斯坦人为地在引力场方程中引入一个叫做“宇宙常数”的项,让它起斥力的作用。爱因斯坦得出一个有限无边的静态宇宙模型,称为爱因斯坦宇宙模型。为了便于理解,可把它比喻为三维空间中的一个二维球面:球面的面积是有限的、但沿着球面没有边界,也无中心,球面保持静态状态。几年以后,爱因斯坦得知河外星系退行,宇宙是膨胀的消息后,非常后悔在自己的模型中加了一个宇宙常数项,称这是他一生中犯的最大错误。
最新发现:系奇异恒星的伴星现身
科学家利用NASA的远紫外谱仪探索卫星首次探测到船底座伊塔星(Eta Carinae)的伴星。船底座伊塔星是系中最重最奇异的星体,座落在离地球7500光年船底座,在南半球用肉眼就可以清楚的看到。科学家认为船底座伊塔星是一个正迅速走向衰亡的不稳定恒星。
长期以来,科学家们就推断它应该存在着一颗伴星,但是一直得不到直接的证据。间接的证据来自其亮度呈现的规则变化。科学家发现船底座伊塔星在可见光,X-射线,射电波和红外线波段的亮度都呈现规则的重覆模式,因此推测它可能是一个双星系统。最有力的证据是每过5年半,船底座伊塔星系统发出的X-射线就会消失约三个月时间。科学家认为船底座伊塔星温度太低,本身并不能发出X-射线,但是它以每秒300英里的速度向外喷发气体粒子,这些气体粒子和伴星发出的粒子相互碰撞后发出X-射线。科学家认为X-射线消失的原因是船底座伊塔星每隔5年半就挡住了这些X-射线。最近一次X-射线消失开始于2003年6月29日。
科学家推断船底座伊塔星和其伴星的距离是地球到太阳之间的距离的10倍,因为它们距离太近,离地球又太远,无法用望远镜直接将它们区分开。另外一种方法就是直接观测伴星所发出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科学家曾经试图用地面望远镜和哈勃望远镜观测,但都没有成功。
美国天主教大学的科学家罗辛纳. 而平(Rosina Iping)及其合作者利用远紫外谱仪卫星来观测这颗伴星,因为它比哈勃望远镜能观测到波长更短的紫外线。它们在6月10日,17日观测到了远紫外线,但是在6月27日,也就是在X-射线消失前的两天远紫外线消失了。观测到的远紫外线来自船底座伊塔星的伴星,因为船底座伊塔星温度太低,本身不会发出远紫外线。这意味着船底座伊塔星挡住了X-射线的同时也挡住了伴星。这是科学家首次观测到船底座伊塔星的伴星发出的光,从而证实了这颗伴星的存在。
有三个太阳的恒星
据新华社14日电 据14日出版的《自然》杂志报道,美国天文学家在距离地球149光年的地方发现了一个具有三颗恒星的奇特星系,在这个星系内的行星上,能看到天空中有三个太阳。
美国加州理工学院的天文学家在该杂志上报告说,他们发现天鹅星座中的HD188753星系中有3颗恒星。处于该星系中心的一颗恒星与太阳系中的太阳类似,它旁边的行星体积至少比木星大14%。该行星与中心恒星的距离大约为800万公里,是太阳和地球之间距离的二十分之一。而星系的另外两颗恒星处于,它们彼此相距不远,也围绕中心恒星公转。
系中的星系多为单星系或双星系,具有三颗以上恒星的星系被称为聚星系,不太多见。
恒星并不是平均分布在宇宙之中,多数的恒星会受彼此的引力影响,形成聚星系统,如双星、三恒星,甚至形成星团,及星系等由数以亿计的恒星组成的恒星集团。
天文学家发现宇宙中生命诞生是普遍的现象
近日美国宇航局寻找地球以外生命物质存在证据的科研小组研究发现,某些在实际生命化学反应中起到至关重要作用的有机化学物质,普遍存在于我们地球以外的浩瀚宇宙中。研究结果表明,在宇宙深处存在生命物质、或者有孕育生命物质的化学反应发生,这在浩瀚的宇宙中是一种普遍现象。
上述研究来自“美国宇航局艾姆斯研究中心(NASA Ames Research Center)”的一个外空生物科研小组。在该小组工作的科学家道格拉斯-希金斯介绍时称:“根据科研小组最新的研究结果显示,一类在生物生命化学中起至关重要作用的化合物,在广袤的宇宙空间中广泛而且大量地存在着。” 作为该外空生物学研究小组的主要成员之一,道格拉斯-希金斯以第一作者的身份将他们的最新研究成果撰文发表在10月10日出版的《天体物理学》杂志上。
希金斯在描述其研究结果时介绍:“利用美国宇航局斯皮策太空望远镜(Spitzer Space Telescope)最近的观测结果,天文学家在我们所居住的系内,到处都发现了一种复杂有机物‘多环芳烃’(PAHs)存在的证据。但是这项发现一开始只得到天文学家的重视,并没有引起对外空生物进行研究的天体生物学家们的兴趣。因为对于生物学而言,普通的多环芳烃物质存在并不能说明什么实质问题。但是,我们的研究小组在最近一项分析结果中却惊喜的发现,宇宙中看到的这些多环芳烃物质,其分子结构中含有‘氮’元素(N)的成分,这一意外发现使我们的研究发生了戏剧性改变。”
该研究小组的另一成员,来自美国宇航局艾姆斯研究中心的天体生物学家路易斯-埃兰曼德拉说:“包括DNA分子在内,对于大多数构成生命的化学物质而言,含氮的有机分子参与是必须的条件。举一个含氮有机物质在生命物质意义上最典型的例子,象我们所熟悉的叶绿素,其对于植物的光合作用起着关键作用,而叶绿素分子中富含这种含氮多环芳烃(PANHs)成分。”
据介绍,在科研小组的研究工作中,除了利用来自斯皮策望远镜得到的观测数据外,科研人员还使用了欧洲宇航局太空红外天文观测卫星的观测数据。在美国宇航局艾姆斯研究中心的实验室中,研究人员对这类特殊的多环芳烃,利用红外光谱化学鉴定技术对其分子结构和化学成分进行了全面分析,找到其中氮元素存在的证据。同时科学家利用计算机技术对这些宇宙中普遍存在的含氮多环芳烃,进行了红外射线光谱模拟分析。
路易斯-埃兰曼德拉同时还表示:“除去上述分析结论以外,更加富有戏剧性的发现是,在斯皮策太空望远镜的观测中还显示出,在宇宙中一些即将死亡的恒星天体周围,环绕其外的众多星际物质中,都大量蕴藏着这种特殊的含氮多环芳烃成分。这一发现从某种意义上似乎也告诉我们,在浩瀚的宇宙星空中,即使在死亡来临的时候,同时也孕育着新生命开始的火种。”
本年度最大科学突破:宇宙正膨胀 发现暗能量
通过分析星系团(图中左侧的点),斯隆数字天空观测天文学家确定,暗能量正在驱动着宇宙不断地膨胀。
据英国《卫报》报道,证实宇宙正在膨胀是本年度最重大的科学突破。
报道说,近73%的宇宙由神秘的暗能量组成,它是一种反重力。在19日出版的美国《科学》杂志上,暗能量的发现被评为本年度最重大的科学突破。通过望远镜,人类在宇宙中已经发现近2000亿个星系,每一个星系中又有约2000亿颗星球。但所有这些加起来仅占整个宇宙的4%。
现在,在新的太空探索基础上,以及通过对100万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大超过了可见宇宙的总和。而近73%的宇宙是最新发现的暗能量。这种奇特的力量似乎正在使宇宙加速膨胀。英国天文学家马丁·里斯爵士将这一发现称为“最重要的发现”。
这一发现是绕轨道运行的威尔金森微波各向异性探测器(WMAP)和斯隆数字天文台(SDSS)的成果。它解决了关于宇宙的年龄、膨胀的速度及组成宇宙的成分等一系列问题的长期争论。天文学家现在相信宇宙的年龄是137亿年
感觉我的回答还不错就请纳我的回答吧 谢谢啦!
斯诺克球员中比如“金左手”“火箭”一类的有绰号的选手 或者“四大天王”一类的 帮忙列一下 谢谢 要全一
LZ你好,首先说明一下,1L的答案大部分正确,但是并不完整而且有一些是明显的不常用绰号。(在我认为就是不准确的。。。)
现列举一下常见球员的绰号:
马克.威廉姆斯: 金左手(四天王之一)
吉米.怀特: 白旋风
罗尼.奥沙利文: 火箭(四天王之一)
斯蒂芬.亨德利: 台球皇帝(四天王之一)
约翰.希金斯: 苏格兰的巫师(快乐的大男孩)(四天王之一)
葛莱梅.多特: 袖珍发电机(冷面杀手)
尼尔.罗伯森: 墨尔本机器
傅家俊: 神奇小子
丁俊晖: 中国神童(傅家俊曾说过愿意将神奇小子的昵称送给丁俊晖)
史蒂夫.戴维斯:天然金块(活力法师,有趣的戴维斯)
詹米.科普: 散弹
肯.达赫迪: 铁人
阿里斯特.卡特: 机长
乔.斯维尔:海盗
马克.塞尔比: 伯爵(小丑,中央台有一阵子喜欢叫他“磨王”,就是击球节奏很慢的意思)
最后要说一下保罗.亨特: 虽然通常被称为”球桌上的贝克汉姆“,”台坛小贝“,但是我个人更认为亨特适合”持金色球杆的人“这个昵称。祝福亨特。
希望我的回答对LZ有帮助。
斯诺克的世界斯诺克排名
世界职业斯诺克排名如下:
随着墨菲夺得2020年斯诺克威尔士公开赛的冠军,世界斯诺克正式更新了最新的世界排名,在这份榜单中:特鲁姆普高居第1,奥沙利文第5,丁俊晖下降一位,被墨菲超越。
扩展资料
斯诺克台球比赛规则可概述如下:
1、 比赛时,选手们使用相同的主球击打目标球。共有21只目标球,其中:15只红球各一分;**球2分;绿色球3分;棕色球4分;蓝色球5分;粉色球6分;黑色球7分;
2、 运动员标准击球顺序:将红色球与彩色球分别交替落袋,直至所有红色球全部离台,然后按彩球分值由低至高的顺序也至全部离台为止。
3、 一杆球之内每个入袋的活球的分值均记入击球运动员的得分记录上;
4、 球员犯规被罚的分数应加在对手的分数记录上;
5、 斯诺克比赛的基本战术是要尽量把主球留在你的对手没有活球可打的地方。也就是给你的对手做障碍。如果一方队员落后对手很多分的话,那么制作障碍让对手被罚分就成为非常重要的得分手段。
参考资料:
中国台球协会-世界职业斯诺克排名中国台球协会-斯诺克比赛规则
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。